

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# rac-Methyl 2-(2-formyl-4-nitrophenoxy)hexanoate

## Jun-Song Song, De-Cai Wang,\* Xue-Jun He, Jiang-Kai Qiu and Ping-Kai Ou-yang

State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: dc\_wang@hotmail.com

Received 23 March 2012; accepted 10 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.076; wR factor = 0.172; data-to-parameter ratio = 15.8.

In the racemic title compound,  $C_{14}H_{17}NO_6$ , the plane of the ester group of the methyl hexanoate side chain makes a dihedral angle of 80.0  $(2)^{\circ}$  with the benzene ring, while the nitro group is approximately coplanar with the benzene ring [dihedral angle =  $10.3 (2)^{\circ}$ ]. In the crystal, molecules form weak aromatic C-H···Onitro hydrogen-bonding interactions, giving inversion dimers [graph set  $R_2^2(8)$ ].

#### **Related literature**

For applications of the title compound, see: Dale & White (2007). For graph-set analysis, see: Etter et al. (1990)



#### **Experimental**

Crystal data C14H17NO6

 $M_r = 295.29$ 

| Monoclinic, $P2_1/n$           | Z = 4                             |
|--------------------------------|-----------------------------------|
| a = 14.918 (3) Å               | Mo $K\alpha$ radiation            |
| b = 4.922 (1) Å                | $\mu = 0.10 \text{ mm}^{-1}$      |
| c = 20.928 (4) Å               | T = 293  K                        |
| $\beta = 103.26 \ (3)^{\circ}$ | $0.20 \times 0.10 \times 0.10$ mm |
| $V = 1495.7 (5) \text{ Å}^3$   |                                   |
|                                |                                   |

## Data collection

| Enraf–Nonius CAD-4 four-circle         | 2722 independent reflections           |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1228 reflections with $I > 2\sigma(I)$ |
| Absorption correction: $\psi$ scan     | 3 standard reflections every 200       |
| (North et al., 1968)                   | reflections                            |
| $T_{\min} = 0.980, \ T_{\max} = 0.990$ | intensity decay: 1%                    |
| 2722 measured reflections              |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.076$ | 172 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.172$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2722 reflections                | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$  $D - H \cdot \cdot \cdot A$  $D \cdot \cdot \cdot A$  $C2-H2A\cdots O1^{i}$ 0.93 2.52 3.442 (6) 169

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by the Center for Testing and Analysis, Nanjing University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2196).

#### References

Dale, K. M. & White, C. M. (2007). Ann. Pharmacother. 41, 599-605. Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supplementary materials

Acta Cryst. (2012). E68, o1395 [doi:10.1107/S1600536812015462]

# rac-Methyl 2-(2-formyl-4-nitrophenoxy)hexanoate

# Jun-Song Song, De-Cai Wang, Xue-Jun He, Jiang-Kai Qiu and Ping-Kai Ou-yang

# Comment

The title compound,  $C_{14}H_{17}NO_6$  is a good organic intermediate for the synthesis of the drug dronedarone, an important drug used to treat cardiac arrhythmia (Dale & White, 2007), and its crystal structure is reported herein.

In the title compound (Fig. 1), both the nitro group and the aldehyde group are approximately coplanar with the benzene ring, as shown by the torsion angles O1—N—C3—C4 [170.9 (4)°] and C6—C5—C7—O3 [177.6 (4)°]. The plane of the ester group of the methyl hexanoate side chain makes a dihedral angle of 80.0 (2)° with the benzene ring. In the crystal, the molecules are linked by weak intermolecular aromatic C2—H…O1<sub>nitro</sub> hydrogen-bonding interactions (Table 1), giving centrosymmetric cyclic dimers [graph set  $R^2_2(8)$  (Etter *et al.*, 1990)]. Also present are intramolecular interactions between the aldehyde and methylene C—H groups and the ether O-atom.

# Experimental

A mixture of 5-nitrosalicylaldehyde (0.2 mol, 33.4 g), methyl 2-bromohexanoate (2-bromhexine acid methyl ester) (0.2 mol, 41.8g) and anhydrous potassium carbonate (0.2 mol, 27.6g) in DMF (400 ml) was reacted for 3.5h at 365-367 K. After the completion of the reaction, the precipitate was filtered and washed and the product (0.1 g) was crystallized from 15 ml of  $CH_3OH$  at room temperature to give colorless crystals from which a specimen was selected for X-ray data collection.

# Refinement

All H atoms were placed in calculated positions and treated as riding, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromatic), C—H(aliphatic), CH, CH<sub>2</sub> and CH<sub>3</sub> H atoms, respectively and with  $U_{iso}(H) = k \times U_{eq}(C)$ , where k = 1.5 for CH<sub>3</sub> H-atoms and k = 1.2 for all other H-atoms.

# **Computing details**

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



## Figure 1

The structure of the title compound, showing the atom numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.

## rac-Methyl 2-(2-formyl-4-nitrophenoxy)hexanoate

Crystal data

 $C_{14}H_{17}NO_6$ F(000) = 624 $D_{\rm x} = 1.311 {\rm Mg m^{-3}}$  $M_r = 295.29$ Monoclinic,  $P2_1/n$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Hall symbol: -P 2yn Cell parameters from 25 reflections  $\theta = 9 - 13^{\circ}$ a = 14.918 (3) Å b = 4.922(1) Å  $\mu = 0.10 \text{ mm}^{-1}$ c = 20.928 (4) Å T = 293 K $\beta = 103.26 (3)^{\circ}$ Block, colourless  $V = 1495.7 (5) \text{ Å}^3$  $0.20\times0.10\times0.10~mm$ Z = 4

# Data collection

Enraf–Nonius CAD-4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$ –2 $\theta$  scans Absorption correction:  $\psi$  scan (North et al., 1968)  $T_{\min} = 0.980, T_{\max} = 0.990$ 2722 measured reflections 2722 independent reflections 1228 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.000$   $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.5^{\circ}$   $h = -17 \rightarrow 17$   $k = 0 \rightarrow 5$   $I = 0 \rightarrow 25$ 3 standard reflections every 200 reflections intensity decay: 1% Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.076$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.172$                               | neighbouring sites                                    |
| S = 1.00                                        | H-atom parameters constrained                         |
| 2722 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.050P)^2]$                |
| 172 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$  |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У            | Ζ            | $U_{ m iso}*/U_{ m eq}$ |
|------|--------------|--------------|--------------|-------------------------|
| Ν    | -0.0326 (2)  | 0.6463 (8)   | 0.59117 (19) | 0.0672 (11)             |
| C1   | 0.2020 (3)   | 0.5437 (8)   | 0.56249 (18) | 0.0592 (11)             |
| H1A  | 0.2389       | 0.6148       | 0.5363       | 0.071*                  |
| O1   | -0.0535 (2)  | 0.8534 (7)   | 0.55953 (18) | 0.0926 (11)             |
| C2   | 0.1162 (3)   | 0.6501 (9)   | 0.55803 (19) | 0.0604 (11)             |
| H2A  | 0.0946       | 0.7942       | 0.5300       | 0.072*                  |
| O2   | -0.0834 (2)  | 0.5218 (8)   | 0.61742 (19) | 0.1013 (13)             |
| C3   | 0.0617 (3)   | 0.5338 (9)   | 0.59740 (18) | 0.0544 (10)             |
| O3   | 0.16665 (19) | -0.0836 (7)  | 0.72916 (13) | 0.0747 (10)             |
| O4   | 0.31794 (16) | 0.2096 (6)   | 0.61157 (12) | 0.0598 (8)              |
| C4   | 0.0913 (2)   | 0.3232 (7)   | 0.64028 (16) | 0.0437 (9)              |
| H4A  | 0.0533       | 0.2496       | 0.6654       | 0.052*                  |
| C5   | 0.1794 (2)   | 0.2243 (8)   | 0.64485 (17) | 0.0496 (9)              |
| 05   | 0.2966 (2)   | 0.0517 (6)   | 0.48813 (13) | 0.0675 (9)              |
| C6   | 0.2353 (3)   | 0.3330 (8)   | 0.60504 (17) | 0.0529 (10)             |
| O6   | 0.3773 (2)   | 0.3910 (8)   | 0.46304 (16) | 0.0990 (12)             |
| C7   | 0.2119 (3)   | 0.0063 (8)   | 0.69327 (17) | 0.0549 (10)             |
| H7A  | 0.2704       | -0.0651      | 0.6961       | 0.066*                  |
| C8   | 0.3791 (3)   | 0.3212 (9)   | 0.5738 (2)   | 0.0645 (12)             |
| H8A  | 0.3839       | 0.5183       | 0.5803       | 0.077*                  |
| C9   | 0.3496 (3)   | 0.2609 (11)  | 0.5030 (2)   | 0.0663 (12)             |
| C10  | 0.2656 (3)   | -0.0163 (11) | 0.41826 (19) | 0.0806 (15)             |
| H10A | 0.2268       | -0.1741      | 0.4135       | 0.121*                  |
| H10B | 0.3180       | -0.0529      | 0.4003       | 0.121*                  |
| H10C | 0.2315       | 0.1337       | 0.3953       | 0.121*                  |
| C11  | 0.4715 (3)   | 0.1900 (12)  | 0.6028 (2)   | 0.0907 (17)             |

| H14C | 0.5912     | 0.4241      | 0.7913     | 0.184* |
|------|------------|-------------|------------|--------|
| H14B | 0.6683     | 0.3891      | 0.7521     | 0.184* |
| H14A | 0.6367     | 0.6807      | 0.7676     | 0.184* |
| C14  | 0.6167 (4) | 0.4976 (13) | 0.7569 (3) | 0.123  |
| H13B | 0.5656     | 0.5768      | 0.6555     | 0.147* |
| H13A | 0.4881     | 0.6034      | 0.6949     | 0.147* |
| C13  | 0.5406 (4) | 0.4958 (13) | 0.6900 (3) | 0.122  |
| H12B | 0.5642     | 0.1040      | 0.6846     | 0.128* |
| H12A | 0.4667     | 0.1703      | 0.6967     | 0.128* |
| C12  | 0.5116 (4) | 0.2243 (12) | 0.6721 (3) | 0.107  |
| H11B | 0.5153     | 0.2588      | 0.5790     | 0.109* |
| H11A | 0.4652     | -0.0034     | 0.5941     | 0.109* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$  | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-----------|-------------|--------------|-------------|--------------|
| N   | 0.055 (2)   | 0.056 (3) | 0.086 (3)   | 0.014 (2)    | 0.008 (2)   | -0.010 (2)   |
| C1  | 0.088 (3)   | 0.040 (2) | 0.050 (2)   | -0.006 (2)   | 0.018 (2)   | -0.0012 (19) |
| O1  | 0.079 (2)   | 0.073 (2) | 0.122 (3)   | 0.031 (2)    | 0.016 (2)   | 0.010(2)     |
| C2  | 0.073 (3)   | 0.048 (3) | 0.057 (2)   | 0.008 (2)    | 0.008 (2)   | 0.004 (2)    |
| O2  | 0.063 (2)   | 0.111 (3) | 0.138 (3)   | 0.010 (2)    | 0.040 (2)   | 0.022 (3)    |
| C3  | 0.053 (2)   | 0.057 (3) | 0.050(2)    | 0.003 (2)    | 0.0052 (17) | -0.010 (2)   |
| O3  | 0.0661 (19) | 0.094 (3) | 0.0691 (18) | -0.0031 (18) | 0.0249 (15) | 0.0283 (18)  |
| O4  | 0.0533 (16) | 0.074 (2) | 0.0563 (16) | 0.0033 (15)  | 0.0203 (13) | 0.0139 (15)  |
| C4  | 0.046 (2)   | 0.036 (2) | 0.049 (2)   | -0.0041 (17) | 0.0126 (16) | 0.0033 (18)  |
| C5  | 0.051 (2)   | 0.044 (2) | 0.051 (2)   | -0.0027 (19) | 0.0062 (18) | -0.0037 (18) |
| O5  | 0.075 (2)   | 0.070 (2) | 0.0647 (19) | -0.0062 (17) | 0.0305 (15) | 0.0095 (17)  |
| C6  | 0.057 (2)   | 0.065 (3) | 0.0377 (18) | -0.003 (2)   | 0.0119 (18) | 0.0054 (19)  |
| O6  | 0.102 (3)   | 0.116 (3) | 0.088 (2)   | -0.025 (2)   | 0.042 (2)   | 0.016 (2)    |
| C7  | 0.053 (2)   | 0.052 (3) | 0.058 (2)   | -0.019 (2)   | 0.010(2)    | -0.010 (2)   |
| C8  | 0.048 (2)   | 0.071 (3) | 0.083 (3)   | -0.005 (2)   | 0.031 (2)   | 0.018 (2)    |
| C9  | 0.053 (2)   | 0.077 (3) | 0.078 (3)   | 0.010 (3)    | 0.032 (2)   | 0.021 (3)    |
| C10 | 0.061 (3)   | 0.115 (4) | 0.063 (3)   | 0.008 (3)    | 0.009 (2)   | -0.011 (3)   |
| C11 | 0.063 (3)   | 0.131 (5) | 0.078 (3)   | -0.010 (3)   | 0.018 (2)   | 0.002 (3)    |
| C12 | 0.107       | 0.107     | 0.107       | 0.000        | 0.024       | 0.000        |
| C13 | 0.122       | 0.122     | 0.122       | 0.000        | 0.028       | 0.000        |
| C14 | 0.123       | 0.123     | 0.123       | 0.000        | 0.028       | 0.000        |

Geometric parameters (Å, °)

| N02    | 1.200 (4) | C7—H7A   | 0.9300    |  |
|--------|-----------|----------|-----------|--|
| N01    | 1.216 (4) | C8—C9    | 1.476 (6) |  |
| N—C3   | 1.490 (5) | C8—C11   | 1.517 (6) |  |
| C1—C2  | 1.366 (5) | C8—H8A   | 0.9800    |  |
| C1—C6  | 1.383 (5) | C10—H10A | 0.9600    |  |
| C1—H1A | 0.9300    | C10—H10B | 0.9600    |  |
| С2—С3  | 1.405 (5) | C10—H10C | 0.9600    |  |
| C2—H2A | 0.9300    | C11—C12  | 1.447 (6) |  |
| C3—C4  | 1.376 (5) | C11—H11A | 0.9700    |  |
| O3—C7  | 1.204 (4) | C11—H11B | 0.9700    |  |
|        |           |          |           |  |

| O4—C6                   | 1.353 (4)        | C12—C13                                              | 1.428 (7) |
|-------------------------|------------------|------------------------------------------------------|-----------|
| O4—C8                   | 1.446 (4)        | C12—H12A                                             | 0.9700    |
| C4—C5                   | 1.385 (5)        | C12—H12B                                             | 0.9700    |
| C4—H4A                  | 0.9300           | C13—C14                                              | 1.587 (7) |
| C5—C6                   | 1.412 (5)        | С13—Н13А                                             | 0.9700    |
| С5—С7                   | 1.479 (5)        | С13—Н13В                                             | 0.9700    |
| O5—C9                   | 1.291 (5)        | C14—H14A                                             | 0.9600    |
| O5—C10                  | 1.468 (4)        | C14—H14B                                             | 0.9600    |
| O6—C9                   | 1.200 (5)        | C14—H14C                                             | 0.9600    |
|                         |                  |                                                      |           |
| O2—N—O1                 | 124.6 (4)        | O6—C9—C8                                             | 121.4 (5) |
| O2—N—C3                 | 116.9 (4)        | O5—C9—C8                                             | 115.3 (4) |
| O1—N—C3                 | 118.5 (4)        | O5—C10—H10A                                          | 109.5     |
| C2—C1—C6                | 121.6 (4)        | O5—C10—H10B                                          | 109.5     |
| C2—C1—H1A               | 119.2            | H10A—C10—H10B                                        | 109.5     |
| C6—C1—H1A               | 119.2            | O5—C10—H10C                                          | 109.5     |
| C1—C2—C3                | 117.6 (4)        | H10A—C10—H10C                                        | 109.5     |
| C1—C2—H2A               | 121.2            | H10B-C10-H10C                                        | 109.5     |
| C3—C2—H2A               | 121.2            | C12—C11—C8                                           | 118.7 (5) |
| C4—C3—C2                | 123.2 (4)        | C12—C11—H11A                                         | 107.6     |
| C4—C3—N                 | 119.5 (4)        | C8—C11—H11A                                          | 107.6     |
| C2—C3—N                 | 117.3 (4)        | C12—C11—H11B                                         | 107.6     |
| C6—O4—C8                | 116.7 (3)        | C8—C11—H11B                                          | 107.6     |
| C3—C4—C5                | 117.8 (3)        | H11A—C11—H11B                                        | 107.1     |
| C3—C4—H4A               | 121.1            | C13—C12—C11                                          | 113.7 (6) |
| C5—C4—H4A               | 121.1            | C13—C12—H12A                                         | 108.8     |
| C4—C5—C6                | 120.4 (4)        | C11—C12—H12A                                         | 108.8     |
| C4—C5—C7                | 117.3 (3)        | C13—C12—H12B                                         | 108.8     |
| C6—C5—C7                | 122.3 (4)        | C11—C12—H12B                                         | 108.8     |
| C9—O5—C10               | 117.2 (4)        | H12A—C12—H12B                                        | 107.7     |
| O4—C6—C1                | 125.9 (4)        | C12—C13—C14                                          | 110.4 (6) |
| O4—C6—C5                | 114.7 (3)        | C12—C13—H13A                                         | 109.6     |
| C1—C6—C5                | 119.4 (4)        | C14—C13—H13A                                         | 109.6     |
| O3—C7—C5                | 123.5 (4)        | C12—C13—H13B                                         | 109.6     |
| O3—C7—H7A               | 118.3            | C14—C13—H13B                                         | 109.6     |
| С5—С7—Н7А               | 118.3            | H13A—C13—H13B                                        | 108.1     |
| O4—C8—C9                | 113.1 (3)        | C13—C14—H14A                                         | 109.5     |
| O4—C8—C11               | 104.4 (3)        | C13—C14—H14B                                         | 109.5     |
| C9—C8—C11               | 110.5 (4)        | H14A—C14—H14B                                        | 109.5     |
| O4—C8—H8A               | 109.6            | C13—C14—H14C                                         | 109.5     |
| С9—С8—Н8А               | 109.6            | H14A—C14—H14C                                        | 109.5     |
| C11—C8—H8A              | 109.6            | H14B—C14—H14C                                        | 109.5     |
| O6—C9—O5                | 123.2 (5)        |                                                      |           |
| C( C1 C2 C2             | 12(()            | CA C5 C( C1                                          | 1 5 (5)   |
| $C_1 = C_2 = C_3$       | -1.3(0)          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.3(3)    |
| $C_1 = C_2 = C_3 = C_4$ | 1.0(0)<br>178(2) | $C_{1} = C_{2} = C_{2} = C_{1}$                      | -1/.0(3)  |
| $C_1 - C_2 - C_3 - IN$  | -1/8.0(3)        | $C_{4} - C_{5} - C_{7} - C_{5}$                      | -1.3(3)   |
| 02— $N$ — $03$ — $04$   | -10.1(0)         | $C_{0} - C_{3} - C_{1} - C_{3}$                      | 1//.0(4)  |
| 01 - N - C3 - C4        | 1/0.9 (4)        | 0-04-08-09                                           | -12.8 (5) |

| O2—N—C3—C2         | 169.5 (4)  | C6—O4—C8—C11    | 166.9 (4)  |
|--------------------|------------|-----------------|------------|
| O1—N—C3—C2         | -9.6 (5)   | C10—O5—C9—O6    | -3.7 (6)   |
| C2—C3—C4—C5        | 0.6 (5)    | C10—O5—C9—C8    | -180.0 (3) |
| N—C3—C4—C5         | -179.9 (3) | O4—C8—C9—O6     | 160.8 (4)  |
| C3—C4—C5—C6        | -1.8 (5)   | C11—C8—C9—O6    | -82.5 (6)  |
| C3—C4—C5—C7        | 177.3 (3)  | O4—C8—C9—O5     | -22.8 (5)  |
| C8—O4—C6—C1        | 4.5 (5)    | C11—C8—C9—O5    | 93.8 (4)   |
| C8—O4—C6—C5        | -177.5 (3) | O4—C8—C11—C12   | -57.5 (6)  |
| C2—C1—C6—O4        | 178.0 (4)  | C9—C8—C11—C12   | -179.5 (5) |
| C2-C1-C6-C5        | 0.1 (6)    | C8—C11—C12—C13  | -68.5 (7)  |
| C4—C5—C6—O4        | -176.6 (3) | C11—C12—C13—C14 | -157.4 (5) |
| <u>C7—C5—C6—O4</u> | 4.3 (5)    |                 |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | D···A     | D—H··· $A$ |
|---------------------------|-------------|-------|-----------|------------|
| C12—H12A····O4            | 0.97        | 2.51  | 2.877 (6) | 102        |
| С7—Н7А…О4                 | 0.93        | 2.46  | 2.769 (5) | 100        |
| C2—H2A····O1 <sup>i</sup> | 0.93        | 2.52  | 3.442 (6) | 169        |

Symmetry code: (i) -x, -y+2, -z+1.